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Astronauts will be responsible for executing a much larger body of procedures as human 

exploration moves further from Earth and Mission Control. Efficient, reliable methods 

for executing these procedures, including manual, automated, and mixed execution will 

be important. We evaluated a new procedure system that integrates step-by-step 

instruction with the means for execution.  While the system allows automation, the 

critical first step, investigated here, is effectiveness supporting manual execution. We 

compared manual execution using the new system to a system analogous to the manual-

only system currently in use on the International Space Station; we assessed whether 

manual performance with the new system would be as good or better than with the legacy 

system.  This lays the foundation for integrating automated execution into the flow of 

procedures designed for humans. In our formative study, we found speed and accuracy of 

procedure execution was better using the new, integrated interface over the legacy design.  

INTRODUCTION 

We report an initial study of methods for controlling 

vehicle systems like life support on the International Space 

Station (ISS).  Much of this work is proceduralized, and 

carried out by following the sequence of actions specified in a 

procedure, such as verifying sensor values and sending 

commands to equipment.  Currently, almost all component 

actions are done through computerized commands not visual 

inspection or manually twisting a valve, but humans initiate 

each action in the procedure. While low-level components 

may operate automatically once initiated, execution of a 

procedure is primarily done by a person reading, assessing, 

and initiating each action in the procedure. Many procedures 

are executed by Mission Control, but much of crewmembers’ 

work on the ISS also relies on procedure execution, e.g., 

science work. For the ISS, procedure guidance for astronauts 

relies PDF or styled XML files of written instructions. This 

simple form of electronic vs paper procedure seems beneficial 

here, as noted elsewhere (aviation Boorman, 2000; though 

with potential complications Mosier, Palmer, & Degani, 

1992). 

Substantially increasing efficiency of proceduralized 

work and independence from Mission Control will be critical 

for long-distance manned space flight (Ambrose, Wilcox, 

Reed, Matthies, Lavery, & Korsmeyer, 2010). Different 

mixtures of ground- versus crew-based control, and manual 

versus automatic execution will be needed. Communication 

lags imply less reliance on ground-based support than for 

current, near-earth operations. Missions will have smaller 

crews, operating more complex, less-tested systems, with 

longer retention intervals since training. Thus methods that 

allow crewmembers to carry out more work, more efficiently 

will be important.  A spectrum of methods from efficient 

manual execution, through mixed-initiative, and automated 

execution will be needed.   

Prior research has approached the topic of human and 

automated procedure execution from two starting points.  

Some researchers began with a situation relying on paper 

documents (as for checklists or procedures) and have asked 

whether and how these might be made dynamic or how more 

support might be provided through automation (Boorman, 

2000; Carvalho, dos Santos, Gomes, Borges, & Guerlain, 

2008; Hutchins, 1996; Mosier et al., 1992). Others have 

started with a focus on procedure automation, and recognized 

that supporting human involvement and oversight is important 

for overall effectiveness of the human-machine system (Dalal 

& Frank, 2010; Kortencamp et al., 2008; Morelli, Bouleau, 

Chinchilla, & Noguero, 2010).  Our broader research agenda 

develops systems for mixed manual and automated execution, 

organized around procedures developed for humans 

(Schreckenghost, et al., 2008). The system used in the 

experiment reported here allows for direct manipulation of the 

procedure interface to perform procedures manually and for 

flexible allocation of procedure actions to manual or 

automated execution. Such support for flexible allocation is a 

key driver of the design; here we report on manual execution.  

 As methods for flexible allocation to manual and 

automated execution are developed, we need to ensure that 

manual operations are well supported and mission 

performance does not deteriorate relative to present methods.  

This ensures that, whatever progress is made in automating 

procedures, a procedure can be executed manually in the new 

system at least as well as in current, all-manual operation.  In 

turn, this ensures that execution systems do not increase 

automation yet decrease overall human-system performance. 

Therefore, our initial evaluation compared manual procedure 

execution using a legacy versus novel interaction design.  

Each of the two interfaces commanded the same simulation of 

an ISS life support device for removing carbon dioxide (CO2).   

gravity
Text Box
Billman, D., Schreckenghost, D. & Miri, P. (2014)  Assessment of Alternative Interfaces for Manual Commanding of Spacecraft Systems: Compatibility with Flexible Allocation Policies.  In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 58, No. 1, pp. 365-369). SAGE Publications.



The Legacy Interface mirrored current ISS manual 

commanding while the Integrated Interface was designed to 

support mixed-execution as well as manual commanding.  Our 

study focused on comparing manual execution but exploration 

of mixed-allocation operations is reported in (Schreckenghost, 

Milam, & Billman, 2014). We draw on prior evaluation 

methods for interaction design for space systems (Billman et 

al., 2011). 

Supporting both speed and accuracy are important 

requirements for operations software.  Errors when 

commanding spacecraft systems can lead to unsafe states and 

accidents.  Software and interface design that slows operator 

control produces inefficient operations, reducing the ability to 

accomplish other critical tasks or to accomplish primary 

mission objectives such as science experiments.  While 

efficient execution of a specific step may not be critical, 

slowed procedure execution can produce cumulative effects 

that impact mission safety and success. 

Procedures for ISS astronauts are information structures 

(currently used as PDF or styled XML documents) typically 

designed by engineers or scientists that spell out how to do 

tasks such as operating ISS life-support systems or conducting 

science experiments. Our study concerns operating the system 

for removing CO2 from cabin air; procedure steps are built 

from actions such as verifying sensor values (e.g., blower is 

on) and issuing system commands ((e.g., open the vent valve). 

The highly specific nature of procedures allows us to compare 

carrying out the identical procedure (e.g., the same sequence 

of verifying and commanding) through alternative interfaces. 

STUDY METHOD 

Design 

Interface Condition 

(Legacy versus Integrated) was 

a within-subjects factor, with 

order counterbalanced between 

subjects. There were 10 

execution Trials using four 

procedures, in each condition. 

Several automated execution 

trials followed.  Here we report 

data from the first 3 trials 

executing a simple form of a 

start-up procedure and the 4
th

 

trial executing a complex form 

of the start-up procedure with 4 

more steps added. (A few 

exploratory trials using the 

automation features were 

included as time permitted and 

are not part of this design.) 

Completion time was the 

primary dependent variable and 

errors were also measured. 

Participants 

All 11 users were graduate 

students, ten in aeronautics 

engineering departments; two were also professional pilots. 

Astronauts frequently have these backgrounds. 

Materials 

The Simulated System Controlled by Procedures. Both 

Legacy and Integrated interaction designs allowed execution 

of the identical procedures, which operated a simulation of the 

carbon dioxide removal system (the CDRS). Prior research 

developed the Procedure Representation Language (PRL) 

(Kortencamp et al., 2008) which includes the machine-

executable commands and the sensor data needed to carry out 

the text instructions for operation. TRACLabs’ PRIDE 

procedure system uses PRL to generate an interface that 

integrates text instructions with controls and displays for their 

execution, our Integrated Interface.   

The Two Interfaces. The Legacy Interface emulated the 

current method used on the ISS.  The Legacy interface (Fig. 1) 

separates procedure specification from procedure execution.  

Procedure specification is provided in a PDF document (for 

each procedure) that describes what to do for every procedure 

sub-step.  This specification provides a navigation path for 

each step though linked windows to a target window. Once at 

the target window, the user can inspect and verify a value or 

press a button to issue a command, for each instruction in the 

procedure.  The same display and command windows are used 

for multiple procedures, in multiple sequences. Executing a 

particular procedure typically requires navigation through 

multiple display/control windows, as well as shifting focus 

between each instruction and the windows needed to carry out 

that instruction. This requires multiple changes in focus, 

produces multiple open windows as a residual, and adds 

window management to the process of procedure execution.  
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Figure 1. The Legacy Interface closely emulating software currently in use on the ISS for controlling 
the CDRS. Top window in this layout is the most graphical of all with windows used. The display shows 
the navigation path for Steps 9 and 10, with the top “CDRS” window open for verifying that the 
Blower (Step 9) and the Water Pump (Step 10) are turned on.  



The Integrated Interface (Fig. 2) differs from Legacy in 

several ways.  Most critically, it places the procedure 

instructions in the same window as the controls and displays 

needed to carry out the instruction; this eliminates the need for 

navigation and change in focus. Specifically, it provides the 

single display element  (e.g., a command button or value to 

verify) needed for each procedure sub-step on the same line as 

the instruction. Instruction types are primarily commands or 

verifications but also include timed waits, data recording, and 

decisions about conditional tasks.  In addition, the interface 

provides feedback to the user when an action has been taken. 

After pressing a button to command a change or to verify a 

value, the color of the button changes, the instruction text 

turns green, and the instruction line is checked.  Finally, the 

interface provides some meta-controls akin to “reset”, which 

were occasionally used. 

CDRS Procedures Used and Training Materials. A 

procedure has a high-level goal and is made up of steps. Steps 

are made up of actions. The results from the first four trials, 

using two of the four procedures, a Simple (Sim) and a 

Complex (Cpx) CDRS Activation Procedure, are reported 

here. Table 1 shows step titles. The Simple Activation 

Procedure had 15 steps and the Complex Activation Procedure 

had 19, with one to 13 actions per step (not including the 

window navigation for the Legacy interface).  For example, 

Step 9 consists of one verification action, for status of the 

water pump, shown in Figure 1 & 2.  Step 7 has two steps, 

commanding and verifying the water pump is turned on, 

shown in Figure 1.  

Table 1- Steps in the Procedure   

Activation steps: 2 Versions    

Steps in CDRS Activation Sim Cpx 

Verify power to CO2 & Air 1 1 

Check CO2 Valve Prerequisite 2 2 

Check CDRS Air Valve Prereq 3 3 

Verify Day/Night configuration 4 4 

Verify Power Available  5 5 

Enable CDRS Blower 6 6 
Enable CDRS Water Pump 7 7 

Ensure CDRS is inactive NA 8 

Put CDRS in Standby Mode 8 9 

Check CDRS Blower State 9 10 

Check CDRS Water Pump State 10 11 

Record CO2 level in the cabin NA 12 

Configure CO2 Vent Valve  11 13 

Configure CO2 Isolation Valve 12 14 

Configure Air Inlet Valve 13 15 

Configure Air Return Valve 14 16 

Configure CDRS Single Bed Op NA 17 

Configure CDRS Dual Bed Op 15 18 

Training materials had an introduction to the CDRS and 

its operation; training on the Legacy Interface; and training on 

the Integrated Interface. Each component included verbal 

comprehension and inference questions. 

Experiment-Running Procedure 

In Phase I, users trained on the CDRS, reading training 

material as a slide presentation, and then answering questions 

with feedback. In Phase 2 they trained on their first system 

(Legacy or Integrated) by reading instructions and answering 

questions about how to accomplish different goals.  Then they 

executed a series of 10 trials, running 4 procedures; the first 4 

trials are reported here.  In Phase 3 they trained on the second 

system and then used that system to do the identical sequence 

of trials as in Phase 2. In Phase 4 they used the Integrated 

Interface to execute parts of these procedures automatically. In 

Phase 5 they took part in a structured interview and filled out a 

questionnaire about the systems. This took about four hours.  

RESULTS  

For orientation, in the Legacy Interface correct execution 

of the Simple Activation procedure required using 7 different 

windows for displays and controls, and 10 focus changes 

among these windows; the Complex procedure required the 

same 7 display and control windows plus twice recording 

values from another window in a spread sheet, and required at 

least 13 focus changes among windows.  While participants 

could learn efficient ways of leaving windows open and 

navigating among them, the focus changes are an intrinsic part 

of the Legacy design. 
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Figure 2.  The Integrated interface provides the procedure and the 
means for verifying and commanding within one window. 



Completing the four procedures was almost twice as fast 

in the Integrated versus Legacy Condition at 5.0 (SD=1.3) 

versus 9.4 (SD=2.4) minutes.  The Integrated Condition was 

faster for every user. The difference was greatest for the first 

trial, but persisted. See Figure 3. A mixed model ANOVA 

found effects of Interface, F(1,9)=55.9, p <.01, Trial 

F(3,27)=32.5, p<.01, Interface X Trial  F(3,27)=19.0, p<.01, 

and the  interaction of Order and Software F(1,9)=13.3,  

p<.01; the interaction reflects the greater difficulty in using the 

interface that is presented first. Concerning learning over 

trials, performance on the first trial with the Legacy Interface 

was particularly difficult, as users sought both to find needed 

elements within a window and to manage window layout. 

Speed-up in the Integrated Condition may be due to reduced 

time reading and understanding the procedure.  

Each trial was scored for errors, as deviation from the 

correct sequence of device commands. Thus, this scoring 

criterion ignored deviations from the written procedure, such 

as verification steps, that did not alter the command sequence.  

It did, however, score a deviation from the command sequence 

as an error, whether or not the outcome of the deviation was 

an unintended state in the device; for example, repeating a 

command often did not adversely affect the device but was 

still a commanding error.  Critically, this scoring rule can be 

applied in both conditions.  First, commands are logged in 

both conditions, though no active response to a ‘verify’ step is 

required in the Legacy Condition. Second, the correct 

command sequence is identical for both procedures and both 

conditions, as the added steps in the Complex Procedure did 

not include commands.  command sequence is identical for 

both procedures and both conditions, as the added steps in the 

Complex Procedure did not include commands.   

No commanding errors occurred in the four trials of the 

Integrated Condition producing 11 of 11 “successful” users. In 

contrast only 1 of 11 users was completely correct on the 

command sequence for all four trials in the Legacy Condition. 

These proportions of success differ significantly, p<.0001, 

Fisher Exact Test. 

The Legacy Condition had 40 total errors, or 5.7% using a 

denominator of 704 (11 users*16 commands*4 trials).  Errors 

in the Legacy Condition dropped over trials, but persisted into 

Trial 4.  Figure 4 shows the number of procedures that had 

commanding errors, the number of command errors, and the 

number of “wrong clicks”. “Wrong clicks” are recorded in the 

Legacy Condition if the user clicks on an window region not 

intended for use; while these are errors we cannot tell whether 

the user was attempting to command or to navigate windows. 

Deviations from the correct sequence were scored by 

type.  There were 11 errors where a command was missed; 12 

where an extraneous command was inserted, 4 where order of 

an adjacent pair was switched, 8 where a command was 

repeated and a group of 5 “omitted” commands. “Omitted” 

commands could not be executed because prior user error(s) 

prevented execution of the omitted command. Informally, 

some errors are more serious than others. Missing a command 

can produce a later situation where the user could not 

complete execution; however, repeating a command, perhaps 

due to uncertainty whether the button had been successfully 

pressed, would not produce bad outcomes, in the context of 

the device used. 

All users rated the Integrated system higher for aiding 

efficiency, 8 of 11 higher for accuracy, and 9 of 11 users 

preferred it. Providing a more visual representation was 

mentioned as a positive aspect of the Legacy interface. 

CONCLUSIONS 

Command errors and speed of execution provide 

converging evidence of the benefit from the Integrated 

Interface relative to the Legacy Interface design, for both 

accuracy and efficiency. Though we had a small number of 

users, condition effects for time and number of successful 
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Figure 3. Mean completion times (+- StDev) for four trials of the 
short (simple) or long (complex) activation procedure, using the 
Legacy or Integrated Interface. 

Figure 4. Numbers of commanding errors for the four trials using 
the Legacy or Integrated Interface. 



 

users were large enough to be significant. Mean completion 

time was reduced by approximately half, and no command 

errors were observed for the Integrated Condition on these 

trials. This suggests the new approach works better than 

current designs for manual operation, while allowing 

integration with flexible automation.  Analyses of the 

additional trials are in progress and the pattern of faster time 

and reduced errors for the Integrated Condition persists. 

For manual execution, the integration of instructions with 

the means to execute them is the most fundamental design 

change in the Integrated interface, with provision of clear and 

specific feedback also fundamental.  We believe these are key 

contributors to improved performance.  Our future work will 

explore interface options within the integrated interface 

concept, and will investigate tasks that require flexible 

allocation between mixtures of manual and automatic 

execution. 

Due to the challenging demands and increased workload 

of long-distance manned space exploration, increased 

automation will almost certainly play a key role. Flexible 
allocation of work allows an operator (i.e., the astronaut) to 

dynamically assign units of work to automation or to execute 

them manually, in light of current circumstances.  We expect 

that a productive design approach for integrating manual and 

automatic operations is to align the units of automation with 

the units of work in manual operations, for example, 

procedures designed for humans (Schreckenghost et al., 2008). 

When the units of work are meaningful, shifts in control 

between manual and automatic execution are likely more 

understandable for the operator, and in turn the operator has a 

more informed basis for allocating work. Initially a procedure 

might be executed manually, as the operator assesses whether 

it produces the expected effects.  Based on such assessment, 

more work units may be allocated to automatic execution.  

Conversely, an operator may shift to manual execution if the 

equipment is replaced or has degraded functions, to monitor 

for departures from expected behavior.  Flexible allocation 

requires methods that support effective manual operation as 

well as allowing for automation. 

In addition to investigating flexible allocation for 

procedure execution, an important research topic will be 

exploring a broader set of conditions, such as off nominal 

operations and situations that do not exactly match those of an 

existing procedure.  For example, users might integrate steps 

from multiple procedures or follow a procedure but adapt a 

step to change the value of a variable to be verified or which 

command should be executed. Means for coordinating a 

procedure step with broader information about system state 

may prove valuable.  With respect to execution of procedures 

through a mix of automated and manual methods, we are 

exploring how users carry out mixed sequences and how 

software supports users doing this. 

Designing for flexible work allocation in procedures can 

provide effective manual system operation, and our design 

approach is promising.  This formative study provides a rich 

set of performance data, which will guide development of 

future assessment methods and design.  
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